Ã山ǿ¼é

Biological and Biomedical Engineering

Note: This is the 2016–2017 edition of the eCalendar. Update the year in your browser's URL bar for the most recent version of this page, or click here to jump to the newest eCalendar.

Biological and Biomedical Engineering

Location

Location

  • Duff Medical Building
  • 3775 University Street, Room 316
  • Montreal QC H3A 2B4
  • Canada
  • Website: www.mcgill.ca/bbme

About Biological and Biomedical Engineering

About Biological and Biomedical Engineering

The Biological and Biomedical Engineering (BBME) graduate program is a new interfaculty program involving the Department of Bioengineering in the Faculty of Engineering and the Department of Biomedical Engineering in the Faculty of Medicine. The new BBME interfaculty program builds on the excellence and high standard of its predecessor graduate program in Biomedical Engineering. This broader interfaculty restructuration supports the growing trend in research universities toward formalized interdisciplinary studies and multifaculty collaboration.

BBME students come from a wide range of backgrounds including engineering, physics, chemistry, biology, and dentistry, among others. The multicultural diversity of our student body is a strength of the program, as networking and collaborative opportunities are vast. Students in BBME have supervisors associated with the program whose home departments will be spread primarily across the Faculties of Engineering and Medicine.

As scientists unravel the molecular and physiological mechanisms of biology, attempt to reverse-engineer naturally occurring biological solutions, devices, and procedures, or develop increasingly advanced technologies to transform patient care, graduates from the BBME program are poised to play a critical role in shaping our global future.

Please consult our website for additional information.

Research Domains

Our faculty members are particularly active in research related to the development of quantitative analysis tools and instruments for biological and biomedical research. The ultimate goal is the pursuit of answers to biological and medical questions. Ongoing biological and biomedical engineering research at Ã山ǿ¼é includes:

  • signal analysis, including brain (EEG), muscles (EMG), eyes (EOG), respiration, and mass spectrometry;
  • systems analysis, including neuromuscular control, and oculomotor and vestibular control;
  • experimental and computational biomechanics, including orthopedic and auditory mechanics;
  • biomaterials, including artificial cells;
  • medical imaging and image processing;
  • micro and nanotechnology and biosensors;
  • nanoparticles and cell imaging;
  • bioinformatics and computational biology;
  • computers in medical education, including interactive 3D models and haptics;
  • biological materials and mechanics;
  • biomolecular and cellular engineering, regenerative medicine;
  • biomedical, diagnostics, and high throughput screening engineering;
  • mechanics of disease;
  • tissue engineering, especially concerning 3D and nano-related biological microfluidics devices, such as fungi and cellular traffic;
  • biological dynamic devices, from whole-organisms (e.g., bacteria) to nanodevices;
  • information processing and storage in biological systems;
  • systems and synthetic biology;
  • cell mechanisms and the cytoskeleton;
  • soft matter physics.
Master of Engineering (M.Eng.); Biological and Biomedical Engineering (Thesis) (45 credits)

The Biological and Biomedical Engineering Master's program focuses on the interdisciplinary application of methods, paradigms, technologies, and devices from engineering and the natural sciences to problems in biology, medicine, and the life sciences. With its unique multidisciplinary environment and taking advantage of research collaborations between staff in the Faculties of Medicine, Science, and Engineering, BBME offers thesis-based graduate degrees (M.Eng.) that span broad themes, including: biomodelling, biosignal processing, medical imaging, nanotechnology, artificial cells and organs, probiotics, bioinformatics, orthopedics, biological materials and mechanobiology, motor proteins and the cytoskeleton, biosensors and biological therapeutics, biological networks, and computational biology. BBME's internationally-renowned staff provide frequent and stimulating interactions with physicians, scientists, and the biomedical industry. Through courses and thesis research, this program will prepare students for careers in industry, academia, hospitals, and government and provide a solid basis for Ph.D. studies. Candidates should hold a Bachelor's degree in engineering, science, or medicine with a strong emphasis on mathematics, physics, chemistry, and basic biology (physiology, cell biology, or molecular biology).

For more information please consult www.mcgill.ca/bbme/prospective-students/masters-program.

Doctor of Philosophy (Ph.D.); Biological and Biomedical Engineering

The goal of the Biological and Biomedical Engineering doctoral program is to provide students with advanced training in the interdisciplinary application of methods, paradigms, technologies, and devices from engineering and the natural sciences to problems in biology, medicine, and the life sciences. The program will focus on an area of choice while integrating quantitative concepts and engineering tools for the study of natural and life sciences and/or for patient care. As part of the Ph.D. requirement, the student will integrate the scientific method, develop critical and deep thinking, and acquire advanced writing and presentation skills that will form the foundation for his/her future career. Under the guidance of his/her supervisor, the student will tackle a research challenge and make original contributions to the advancement of science and engineering in an area of Biological and Biomedical Engineering. Through independent research and thesis writing, the program will prepare students for careers in academia, industry, hospitals, and government. Students who complete the program will obtain a doctor of philosophy in Biological and Biomedical Engineering. The best preparation for this program is a master's degree in BBME or a related discipline.

For more information please consult www.mcgill.ca/bbme/prospective-students/doctoral-program.

Programs, Courses and University Regulations—2016-2017 (last updated Jul. 14, 2016) (disclaimer)

Biological and Biomedical Engineering Admission Requirements and Application Procedures

Biological and Biomedical Engineering Admission Requirements and Application Procedures

Admission Requirements

For up-to-date admission requirements, please consult www.mcgill.ca/bbme/prospective-students/how-apply and University Regulations and Resources > Graduate > Graduate Admissions and Application Procedures > Admission Requirements (Minimum Requirements to be Considered for Admission).

Application Procedures

Ã山ǿ¼é’s online application form for graduate program candidates is available at www.mcgill.ca/gradapplicants/apply.

See University Regulations and Resources > Graduate > Graduate Admissions and Application Procedures > Application Procedures for detailed application procedures.

Please address enquiries directly to info.bbme [at] mcgill.ca.

Application Deadlines

Application Deadlines

The application deadlines listed here are set by the Biological and Biomedical Engineering Graduate Program and may be revised at any time. Applicants must verify all deadlines and documentation requirements well in advance on the appropriate Ã山ǿ¼é departmental website; please consult the list at www.mcgill.ca/gps/contact/graduate-program. For additional information, please consult www.mcgill.ca/bbme/prospective-students/how-apply.

Canadian International Special/Exchange/Visiting
Fall: Feb. 1 Fall: Feb. 1 Fall: Same as Canadian/International
Winter: Nov. 10 Winter: Sept. 10 Winter: Same as Canadian/International
Summer: N/A Summer: N/A Summer: N/A

Admission to graduate studies is competitive; accordingly, late and/or incomplete applications are considered only as time and space permit.

Note: Applications for Summer term admission will not be considered.
Programs, Courses and University Regulations—2016-2017 (last updated Jul. 18, 2016) (disclaimer)

Biological and Biomedical Engineering Faculty

Biological and Biomedical Engineering Faculty

Biological and Biomedical Engineering is an interfaculty program offered jointly by the Department of Bioengineering in the Faculty of Engineering and the Department of Biomedical Engineering in the Faculty of Medicine.

Please refer to Bioengineering Faculty and Biomedical Engineering Faculty for their respective faculty listings.

Programs, Courses and University Regulations—2016-2017 (last updated Jul. 14, 2016) (disclaimer)

Master of Engineering (M.Eng.); Biological and Biomedical Engineering (Thesis) (45 credits)

** NEW PROGRAM **

The Biological and Biomedical Engineering (BBME) Master’s program focuses on the interdisciplinary application of methods, paradigms, technologies, and devices from engineering and the natural sciences to problems in biology, medicine, and the life sciences. With its unique multidisciplinary environment, and taking advantage of research collaborations between staff in the Faculties of Medicine, Science, and Engineering. BBME offers thesis-based graduate degrees (M.Eng.) that span broad themes in biomodelling, biosignal processing, medical imaging, nanotechnology, artificial cells and organs, probiotics, bioinformatics, bioengineering, biomaterials, and orthopaedics. BBME’s internationally renowned staff provide frequent and stimulating interactions with physicians, scientists, and the biomedical industry. Through courses and thesis research, this program will prepare students for careers in industry, academia, hospitals and government and provide a solid basis for Ph.D. studies. Candidates should hold a bachelor’s degree in engineering, science, or medicine with a strong emphasis on mathematics, physics, chemistry, and basic physiology or cell biology.

Thesis Courses (24 credits)

BBME 693 (6) Thesis Research 1
BBME 694 (6) Thesis Research 2
BBME 695 (12) Thesis Submission

Required Courses (3 credits)

BBME 600D1 (1.5) Seminars in Biological and Biomedical Engineering
BBME 600D2 (1.5) Seminars in Biological and Biomedical Engineering

Complementary Courses (18 credits)

12 credits from BMDE or BIEN courses at the 500-level or higher which may also include MDPH 607, of which the following must be included:

3 credits from BMDE and 3 credits from BIEN

3 credits from the following quantitative courses, or other quantitative courses (at the 500-level or higher) approved by the Graduate Program Director.

BIEN 510 (3) Nanoparticles in the Medical Sciences
BIEN 520 (3) High Throughput Bioanalytical Devices
BIEN 530 (3) Imaging and Bioanalytical Instrumentation
BIEN 550 (3) Biomolecular Devices
BIEN 560 (3) Biosensors
BMDE 502 (3) BME Modelling and Identification
BMDE 503 (3) Biomedical Instrumentation
BMDE 509 (3) Quantitative Analysis and Modelling of Cellular Processes
BMDE 512 (3) Finite-Element Modelling in Biomedical Engineering
BMDE 519 (3) Biomedical Signals and Systems
BMDE 610 (3) Functional Neuroimaging Fusion

6 credits from the list below or from other courses (at the 500-level or higher) which have both biomedical content and content from the physical sciences, engineering, or computer science, with the approval of the supervisor and Graduate Program Director.

BIEN 510 (3) Nanoparticles in the Medical Sciences
BIEN 520 (3) High Throughput Bioanalytical Devices
BIEN 530 (3) Imaging and Bioanalytical Instrumentation
BIEN 550 (3) Biomolecular Devices
BIEN 560 (3) Biosensors
BIOT 505 (3) Selected Topics in Biotechnology
BMDE 501 (3) Selected Topics in Biomedical Engineering
BMDE 502 (3) BME Modelling and Identification
BMDE 503 (3) Biomedical Instrumentation
BMDE 504 (3) Biomaterials and Bioperformance
BMDE 505 (3) Cell and Tissue Engineering
BMDE 506 (3) Molecular Biology Techniques
BMDE 508 (3) Introduction to Micro and Nano-Bioengineering
BMDE 509 (3) Quantitative Analysis and Modelling of Cellular Processes
BMDE 510 (3) Topics in Astrobiology
BMDE 512 (3) Finite-Element Modelling in Biomedical Engineering
BMDE 519 (3) Biomedical Signals and Systems
BMDE 610 (3) Functional Neuroimaging Fusion
BMDE 650 (3) Advanced Medical Imaging
BMDE 651 (3) Orthopaedic Engineering
BMDE 652 (3) Bioinformatics: Proteomics
COMP 526 (3) Probabilistic Reasoning and AI
COMP 546 (4) Computational Perception
COMP 558 (3) Fundamentals of Computer Vision
COMP 761 (4) Advanced Topics Theory 2
ECSE 526 (3) Artificial Intelligence
ECSE 681* (4) Colloquium in Electrical Engineering
EXMD 610 (3) Molecular Methods in Medical Research
MDPH 607 (3) Introduction to Medical Imaging
MDPH 611 (2) Medical Electronics
MDPH 612 (2) Computers in Medical Imaging
MECH 500* (3) Selected Topics in Mechanical Engineering
MECH 561 (3) Biomechanics of Musculoskeletal Systems
PHGY 517 (3) Artificial Internal Organs
PHGY 518 (3) Artificial Cells

* When topic is appropriate.

Programs, Courses and University Regulations—2016-2017 (last updated Jul. 27, 2016) (disclaimer)

Doctor of Philosophy (Ph.D.); Biological and Biomedical Engineering

** NEW PROGRAM **

The goal of the Biological and Biomedical Engineering Ph.D. program is for students to gain advanced training in the interdisciplinary application of methods, paradigms, technologies, and devices from engineering and the natural sciences to problems in biology, medicine, and the life sciences. The program will focus in an area of choice while integrating quantitative concepts and engineering tools for the study of life sciences and/or for patient care. As part of the Ph.D. requirement, the student will integrate the scientific method, develop critical and deep thinking, and acquire advanced writing and presentation skills that will form the foundation for his/her career. Under the guidance of his/her supervisor, the student will tackle a research challenge and make original contributions to the advancement of science and engineering in an area of Biological and Biomedical Engineering. The program will prepare students for careers in academia, industry, hospitals and government. Students who complete the program will obtain a Doctor of Philosophy in Biological and Biomedical Engineering. The best preparation for this program is a Master’s degree in BBME or a related discipline.

Thesis

Thesis

A thesis for the doctoral degree must constitute original scholarship and must be a distinct contribution to knowledge. It must show familiarity with previous work in the field and must demonstrate ability to plan and carry out research, organize results, and defend the approach and conclusions in a scholarly manner. The research presented must meet current standards of the discipline; as well, the thesis must clearly demonstrate how the research advances knowledge in the field. Finally, the thesis must be written in compliance with norms for academic and scholarly expression and for publication in the public domain.

Required Course

BBME 700 () Ìý

Students must be registered in this course at the time of the Thesis Proposal and Comprehensive Exam Meeting.

Further courses may be required by the supervisor(s) in consultation with the Graduate Program Director, depending on the educational background of individual students.

Programs, Courses and University Regulations—2016-2017 (last updated Jul. 27, 2016) (disclaimer)
Faculty of Medicine—2016-2017 (last updated Jul. 14, 2016) (disclaimer)
Back to top