Bash brothers of chemistry discover unusual material
In late 2012, a trans-Atlantic team of researchers co-led by Fri拧膷i膰 reported they had been able to observe a milling reaction in real time, by using highly penetrating X-rays to observe the rapid chemical transformations as a mill mixed, ground, and transformed simple ingredients into a complex product. 聽Now, the researchers have used this technique to discover a short-lived, structurally unusual metal-organic material created during the milling process. In a paper published March 23 in Nature Communications, the scientists dub the material 鈥渒atsenite,鈥 after the first author of the article, Athanassios D. Katsenis. Now a postdoctoral fellow at 缅北强奸, Katsenis was a visiting student in Fri拧膷i膰鈥檚 group when the research was conducted. He analyzed the topology of the material -- the arrangement and connections between the structural 鈥榥odes鈥 of its crystal structure -- and realized that it didn鈥檛 correspond to anything previously seen.
The discovery provides the first concrete evidence of something that has long been suspected, the researchers conclude:聽 milling creates temporary phases with chemical structures that are not achievable under conventional conditions.
鈥淲hile this particular katsenite-type structure is unlikely to be of any practical use, the discovery represents a breakthrough that impacts our understanding of large-scale processing of materials and opens a new environment to generate previously inaccessible structures,鈥 Fri拧膷i膰 says. Besides all that, he adds, 鈥淚t is just great to have a chemical structure type named after a researcher at 缅北强奸!鈥
Other contributors to the study include a group led by Ivan Halasz from the Institute Ru膽er Bo拧kovi膰 (Croatia), as well as researchers from the Max-Planck Institute for Solid-state Chemistry (Germany) and the European Synchrotron Radiation Facility (ESRF, France).
-----------------------------------------------------------------------------------------
鈥In situ X-ray diffraction monitoring of a mechanochemical reaction reveals a unique topology metal-organic framework,鈥滽atsenis et al, Nature Communications, 23 March 2015. DOI: 10.1038/ncomms7662
-----------------------------------------------------------------------------------------
IMAGE: Schematic view of katsenite鈥檚 topology, with different colours depicting different types of nodes in its crystal structure
CREDIT: Athanassios D. Katsenis