Bacterium from Canadian High Arctic and life on Mars
In order to understand what it takes to be able to do so, Mykytczuk, Whyte and their colleagues studied the genomic sequence and other molecular traits of P. halocryophilus OR1. The researchers found that the bacterium adapts to the extremely cold, salty conditions in which it is found thanks to significant modifications in its cell structure and function and increased amounts of cold-adapted proteins. These include changes to the membranes that envelop the bacterium and protect it from the hostile environment in which it lives.
The genome sequence also revealed that this permafrost microbe is unusual in other ways. It appears to maintain high levels of compounds inside the bacterial cell that act as a sort of molecular antifreeze, keeping the microbe from freezing solid, while at the same time protecting the cell from the very salty exterior environment.
The researchers believe however, that such microbes may potentially play a harmful role in extremely cold environments such as the High Arctic by increasing carbon dioxide emissions from the melting permafrost, one of the results of global warming.
Whyte is delighted with the discovery and says with a laugh, “I’m kind of proud of this bug. It comes from the Canadian High Arctic and is our cold temperature champion, but what we can learn from this microbe may tell us a lot about how similar microbial life may exist elsewhere in the solar system.”
This research was funded by: Natural Sciences and Engineering Research Council of Canada CREATE Canadian Astrobiology Training Program, Canadian Space Agency, the Polar Continental Shelf Program, Canada Research Chairs Program, and the Canada Foundation for Innovation.