山ǿ

News

Big data analysis suggests role of brain connectivity in epilepsy-related atrophy

The connectome is a map of neural connections that describes how brain regions interact and work together to perform certain tasks.
Published: 2 December 2020

Large multi-site study accurately predicts damage to grey matter by disease

An international study has found a link between the brain’s network connections and grey matter atrophy caused by certain types of epilepsy, a major step forward in our understanding of the disease.

In neuroscience, it is becoming increasingly clear that the brain’s connectome is as important as its anatomy when studying human disease. The connectome is a map of neural connections that describes how brain regions interact and work together to perform certain tasks. While connectome research in epilepsy has moved forward in recent years, there is still a lot we do not know about its role in the disorder.

The study, led by researchers from The Neuro (Montreal Neurological Institute-Hospital), analyzed data from 1,021 individuals with epilepsy and 1,564 healthy controls over 19 sites around the world from the ENIGMA database, a collection of neuroimaging data available to researchers under Open Science principles. They used this data to map grey matter atrophy, a characteristic of epilepsy, in the patients.

They then collected data from another database called the Human Connectome Project, which provides connectome data from a large group of healthy controls. Their hypothesis was that grey matter atrophy would appear most often in parts of the brain where connectivity was highest, known as hubs.

“Hub regions are known to participate in brain signalling, have high plasticity, and high metabolic activity, making them a candidate for epilepsy-related atrophy,” says Sara Larivière, the study’s lead author and a PhD candidate at The Neuro.

The team found that areas of high atrophy in patients with both idiopathic generalized epilepsy and temporal lobe epilepsy also tended to be hub regions. Using further analyses, they were able to show their model could predict the damage the epilepsy did to the grey matter of individual patients over time.

“Our multi-site findings show that brain connectivity contributes to the effect that epilepsy has on whole brain structure,” says Boris Bernhardt, a researcher at The Neuro and the study’s senior author. “This will be important to understand common functional deficits in individual patients and to assess the effect of the disease over time.” Their study was published in the journal on Nov. 18, 2020. It was funded by the Canadian Institutes of Health Research and the Canada Research Chairs Program.

The Neuro

The Neuro – The Montreal Neurological Institute-Hospital – is a world-leading destination for brain research and advanced patient care. Since its founding in 1934 by renowned neurosurgeon Dr. Wilder Penfield, The Neuro has grown to be the largest specialized neuroscience research and clinical center in Canada, and one of the largest in the world. The seamless integration of research, patient care, and training of the world’s top minds make The Neuro uniquely positioned to have a significant impact on the understanding and treatment of nervous system disorders. In 2016, The Neuro became the first institute in the world to fully embrace the Open Science philosophy, creating the Tanenbaum Open Science Institute. The Montreal Neurological Institute is a 山ǿ research and teaching institute. The Montreal Neurological Hospital is part of the Neuroscience Mission of the 山ǿ Health Centre. For more information, please visit

The Neuro logo山ǿ logo

The Neuro (Montreal Neurological Institute-Hospital)is a bilingual academic healthcare institution. We are a山ǿ research and teaching institute; delivering high-quality patient care, as part of the Neuroscience Mission of the 山ǿ Health Centre.We areproud to be a Killam Institution, supported by the Killam Trusts.

Back to top