缅北强奸

Event

Jose Bastidas, LACIM

Friday, October 7, 2022 11:00to12:00

Title:聽The primitive Eulerian polynomial.

Abstract:聽We introduce the Primitive Eulerian polynomial $P_mathcal{A}(z)$ of a central hyperplane Arrangement $mathcal{A}$. It is a reparametrization of the cocharacteristic polynomial of the arrangement. Previous work (2021) implicitly showed that this polynomial has nonnegative coefficients in the simplicial case. If $mathcal{A}$ is the arrangement corresponding to a Coxeter group $W$ of type A or B, then $P_mathcal{A}(z)$ is the generating function for the (flag)excedance statistic on a particular subset of $W$. No interpretation was found for reflection arrangements of type D.

We present an alternative geometric and combinatorial interpretation for the coefficients of $P_mathcal{A}(z)$ for all simplicial arrangements $mathcal{A}$. For reflection arrangements of types A, B, and D, we find recursive formulas that mirror those for the Eulerian polynomial of the corresponding type. We also present real-rootedness results and conjectures for $P_mathcal{A}(z)$. This is joint work with Christophe Hohlweg and Franco Saliola.

PK-4323, UQAM, 201, av du Pr茅sident-Kennedy

Web site :

Follow us on

Back to top